Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Elkins, Christopher A (Ed.)ABSTRACT Antibiotics are often used to treat severeVibrioinfections, with third-generation cephalosporins and tetracyclines combined or fluoroquinolones alone being recommended by the US Centers for Disease Control and Prevention. Increases in antibiotic resistance of both environmental and clinical vibrios are of concern; however, limited longitudinal data have been generated among environmental isolates to inform how resistance patterns may be changing over time. Hence, we evaluated long-term trends in antibiotic resistance of vibrios isolated from Chesapeake Bay waters (Maryland) across two 3-year sampling periods (2009–2012 and 2019–2022).Vibrio parahaemolyticus(n= 134) andVibrio vulnificus(n= 94) toxR-confirmed isolates were randomly selected from both sampling periods and tested for antimicrobial susceptibility against eight antibiotics using the Kirby-Bauer disk diffusion method. A high percentage (94%–96%) ofV. parahaemolyticusisolates from both sampling periods were resistant to ampicillin and only 2%–6% of these isolates expressed intermediate resistance or resistance to third-generation cephalosporins, amikacin, tetracycline, and trimethoprim-sulfamethoxazole. Even lower percentages of resistantV. vulnificusisolates were observed and those were mostly recovered from 2009 to 2012, however, the presence of multiple virulence factors was observed. The frequency of multi-drug resistance was relatively low (6%–8%) but included resistance against antibiotics used to treat severe vibriosis in adults and children. All isolates were susceptible to ciprofloxacin, a fluoroquinolone, indicating its sustained efficacy as a first-line agent in the treatment of severe vibriosis. Overall, our data indicate that antibiotic resistance patterns amongV. parahaemolyticusandV. vulnificusrecovered from the lower Chesapeake Bay have remained relatively stable since 2009.IMPORTANCEVibriospp. have historically been susceptible to most clinically relevant antibiotics; however, resistance and intermediate-resistance have been increasingly recorded in both environmental and clinical isolates. Our data showed that while the percentage of multi-drug resistance and resistance to antibiotics was relatively low and stable across time, someVibrioisolates displayed resistance and intermediate resistance to antibiotics typically used to treat severe vibriosis (e.g., third-generation cephalosporins, tetracyclines, sulfamethoxazole-trimethoprim, and aminoglycosides). Also, given the high case fatality rates observed withVibrio vulnificusinfections, the presence of multiple virulence factors in the tested isolates is concerning. Nevertheless, the continued susceptibility of all tested isolates against ciprofloxacin, a fluoroquinolone, is indicative of its use as an effective first-line treatment of severeVibriospp. infections stemming from exposure to Chesapeake Bay waters or contaminated seafood ingestion.more » « less
-
Hazen, Terry C. (Ed.)Climate change raises an old disease to a new level of public health threat. The causative agent,Vibrio cholerae, native to aquatic ecosystems, is influenced by climate and weather processes. The risk of cholera is elevated in vulnerable populations lacking access to safe water and sanitation infrastructure. Predictive intelligence, employing mathematical algorithms that integrate earth observations and heuristics derived from microbiological, sociological, and weather data, can provide anticipatory decision-making capabilities to reduce the burden of cholera and save human lives. An example offered here is the recent outbreak of cholera in Malawi, predicted in advance by such algorithms.more » « less
-
Current modeling practices for environmental and sociological modulated infectious diseases remain inadequate to forecast the risk of outbreak(s) in human populations, partly due to a lack of integration of disciplinary knowledge, limited availability of disease surveillance datasets, and overreliance on compartmental epidemiological modeling methods. Harvesting data knowledge from virus transmission (aerosols) and detection (wastewater) of SARS-CoV-2, a heuristic score-based environmental predictive intelligence system was developed that calculates the risk of COVID-19 in the human population. Seasonal validation of the algorithm was uniquely associated with wastewater surveillance of the virus, providing a lead time of 7–14 days before a county-level outbreak. Using county-scale disease prevalence data from the United States, the algorithm could predict COVID-19 risk with an overall accuracy ranging between 81% and 98%. Similarly, using wastewater surveillance data from Illinois and Maryland, the SARS-CoV-2 detection rate was greater than 80% for 75% of the locations during the same time the risk was predicted to be high. Results suggest the importance of a holistic approach across disciplinary boundaries that can potentially allow anticipatory decision-making policies of saving lives and maximizing the use of available capacity and resources.more » « less
-
Genomic attributes of Vibrio cholerae O1 responsible for 2022 massive cholera outbreak in BangladeshIn 2022, one of its worst cholera outbreaks began in Bangladesh, and the Dhaka hospital treated more than 1300 patients and ca. 42,000 diarrheal cases from March-1 to April-10, 2022. Here, we present genomic attributes of V. cholerae O1 responsible for the 2022 Dhaka outbreak and 960 7th pandemic El Tor (7PET) strains from 88 countries. Results show strains isolated during the Dhaka outbreak cluster with 7PET wave-3 global clade strains, but comprise subclade BD-1.2, for which the most recent common ancestor appears to be that responsible for recent endemic cholera in India. BD-1.2 strains are present in Bangladesh since 2016, but not establishing dominance over BD-2 lineage strains until 2018 and predominantly associated with endemic cholera. In conclusion, the recent shift in lineage and genetic attributes, including serotype switching of BD-1.2 from Ogawa to Inaba, may explain the increasing number of cholera cases in Bangladesh.more » « less
-
Abstract Periodical cicadas (Hemiptera:Magicicada) have coevolved with obligate bacteriome-inhabiting microbial symbionts, yet little is known about gut microbial symbiont composition or differences in composition among allochronicMagicicadabroods (year classes) which emerge parapatrically or allopatrically in the eastern United States. Here, 16S rRNA amplicon sequencing was performed to determine gut bacterial community profiles of three periodical broods, including II (Connecticut and Virginia, 2013), VI (North Carolina, 2017), and X (Maryland, 2021, and an early emerging nymph collected in Ohio, 2017). Results showed similarities among all nymphal gut microbiomes and between morphologically distinct 17-yearMagicicada, namelyMagicicada septendecim(Broods II and VI) and 17-yearMagicicada cassini(Brood X) providing evidence of a core microbiome, distinct from the microbiome of burrow soil inhabited by the nymphs. Generally, phylaBacteroidetes[Bacteroidota] (> 50% relative abundance),Actinobacteria[Actinomycetota], orProteobacteria[Pseudomonadota] represented the core.Acidobacteriaand generaCupriavidus,Mesorhizobium, andDelftiawere prevalent in nymphs but less frequent in adults. The primary obligate endosymbiont,Sulcia(Bacteroidetes), was dominant amongst core genera detected.Chryseobacteriumwere common in Broods VI and X.Chitinophaga, Arthrobacter, andRenibacteriumwere common in Brood X, andPedobacterwere common to nymphs of Broods II and VI. Further taxonomic assignment of unclassifiedAlphaproteobacteriasequencing reads allowed for detection of multiple copies of theHodgkinia16S rRNA gene, distinguishable as separate operational taxonomic units present simultaneously. As major emergences of the broods examined here occur at 17-year intervals, this study will provide a valuable comparative baseline in this era of a changing climate.more » « less
-
null (Ed.)Climate variables influence the occurrence, growth, and distribution of Vibrio cholerae in the aquatic environment. Together with socio-economic factors, these variables affect the incidence and intensity of cholera outbreaks. The current pandemic of cholera began in the 1960s, and millions of cholera cases are reported each year globally. Hence, cholera remains a significant health challenge, notably where human vulnerability intersects with changes in hydrological and environmental processes. Cholera outbreaks may be epidemic or endemic, the mode of which is governed by trigger and transmission components that control the outbreak and spread of the disease, respectively. Traditional cholera risk assessment models, namely compartmental susceptible-exposed-infected-recovered (SEIR) type models, have been used to determine the predictive spread of cholera through the fecal–oral route in human populations. However, these models often fail to capture modes of infection via indirect routes, such as pathogen movement in the environment and heterogeneities relevant to disease transmission. Conversely, other models that rely solely on variability of selected environmental factors (i.e., examine only triggers) have accomplished real-time outbreak prediction but fail to capture the transmission of cholera within impacted populations. Since the mode of cholera outbreaks can transition from epidemic to endemic, a comprehensive transmission model is needed to achieve timely and reliable prediction with respect to quantitative environmental risk. Here, we discuss progression of the trigger module associated with both epidemic and endemic cholera, in the context of the autochthonous aquatic nature of the causative agent of cholera, V. cholerae, as well as disease prediction.more » « less
-
Swanson, Michele S. (Ed.)ABSTRACT Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of SARS-CoV-2 and allows assessing and mitigating COVID-19 outbreaks, by evaluating the total microbial assemblage in a community. Composite wastewater samples (24 h) were collected weekly from a manhole between December 2020 and November 2021 in Maryland, USA. RT-qPCR results showed concentrations of SARS-CoV-2 RNA recovered from wastewater samples reflected incidence of COVID-19 cases. When a drastic increase in COVID-19 was detected in February 2021, samples were selected for microbiome analysis (DNA metagenomics, RNA metatranscriptomics, and targeted SARS-CoV-2 sequencing). Targeted SARS-CoV-2 sequencing allowed for detection of important genetic mutations, such as spike: K417N, D614G, P681H, T716I, S982A, and D1118H, commonly associated with increased cell entry and reinfection. Microbiome analysis (DNA and RNA) provided important insight with respect to human health-related factors, including detection of pathogens and their virulence/antibiotic resistance genes. Specific microbial species comprising the wastewater microbiome correlated with incidence of SARS-CoV-2 RNA, suggesting potential association with SARS-CoV-2 infection. Climatic conditions, namely, temperature, were related to incidence of COVID-19 and detection of SARS-CoV-2 in wastewater, having been monitored as part of an environmental risk score assessment carried out in this study. In summary, the wastewater microbiome provides useful public health information, and hence, a valuable tool to proactively detect and characterize pathogenic agents circulating in a community. In effect, metagenomics of wastewater can serve as an early warning system for communicable diseases, by providing a larger source of information for health departments and public officials. IMPORTANCE Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals. Therefore, wastewater samples can be used to test all individuals of a community contributing to the sewage collection system, i.e., the infrastructure, such as gravity pipes, manholes, tanks, lift stations, control structures, and force mains, that collects used water from residential and commercial sources and conveys the flow to a wastewater treatment plant. Here, we profile community wastewater collected from a manhole, detect presence of SARS-CoV-2, identify genetic mutations of SARS-CoV-2, and perform COVID-19 risk score assessment of the study area. Using metagenomics analysis, we also detect other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Results show that by analyzing all microorganisms present in wastewater, pathogens circulating in a community can provide an early warning for contagious diseases.more » « less
-
Abstract The incidence of vibriosis is rising globally with evidence of climate variability influencing environmental processes that support growth of pathogenicVibrio spp. The waterborne pathogen,Vibrio vulnificuscan invade wounds and has one of the highest case fatality rates in humans. The bacterium cannot be eradicated from the aquatic environment, hence climate driven environmental conditions enhancing growth and dissemination ofV.vulnificusneed to be understood to provide preemptive assessment of its presence and distribution in aquatic systems. To achieve this objective, satellite remote sensing was employed to quantify the association of sea surface temperature (SST) and chlorophyll‐a(chl‐a) in locations with reportedV.vulnificusinfections. Monthly analysis was done in two populated regions of the Gulf of Mexico—Tampa Bay, Florida, and Galveston Bay, Texas. Results indicate warm water, characterized by a 2‐month lag in SST, high concentration of phytoplankton, proxied for zooplankton using 1 month lagged chl‐avalues, was statistically linked to higher odds ofV.vulnificusinfection in the human population. Identification of climate and ecological processes thresholds is concluded to be useful for development of an heuristic prediction system designed to determine risk of infection for coastal populations.more » « less
An official website of the United States government
